Optimization of Wind Turbine Performance through Advanced Materials and Design
Abstract
Improving wind turbine blade design and overall performance is essential; as a result, this study offers a thorough analysis of recent developments in advanced materials and aerodynamic optimization techniques. The escalating global demand for sustainable power necessitates maximizing the efficiency and sustainability of wind energy. Despite progress, challenges remain in optimizing energy capture, ensuring the structural integrity of increasingly larger turbines, and addressing environmental concerns. This review critically examines the potential of high-performance composites (such as CFRPs and bio-based alternatives), smart materials (including SMAs and self-healing polymers), and nanomaterials (for surface coatings) to improve blade performance, durability, and sustainability. Furthermore, it analyses the impact of innovative aerodynamic profiles (including bio-inspired designs), variable pitch and twist technologies, and load reduction strategies on energy efficiency. The study identifies key challenges and research gaps in the integrated application of advanced materials and aerodynamic design for next-generation wind turbines, emphasizing the need for cost-effective and scalable solutions alongside comprehensive Life Cycle Assessments (LCAs). By synthesizing current knowledge, this review highlights promising future research directions to achieve more efficient, sustainable, and economically viable wind energy solutions through the synergistic advancement of materials and design.
Keywords:
Advanced materials, Aerodynamic optimisation, Wind turbine bladesReferences
- [1] Firoozi, A. A., Hejazi, F., & Firoozi, A. A. (2024). Advancing wind energy efficiency: A systematic review of aerodynamic optimization in wind turbine blade design. Energies, 17(12), 1–31. https://doi.org/10.3390/en17122919
- [2] Tolasa, D. G., & Furi, A. T. (2025). The role of advanced materials in the optimization of wind energy systems: A physics based approach. Acceleron aerospace journal, 4(1), 847–857. https://doi.org/10.61359/11.2106-2504
- [3] Udorah, F. N., & Adeniran, A. O. (2025). A meta-study on smart coatings with carbon nanoparticles. Journal of environmental engineering and energy, 2(1), 44–63. https://doi.org/10.22105/jeee.v2i1.43
- [4] Familusi, O. B., Omoyeni, O. D., Samchuks, O. M., & Adeniran, A. O. (2024). Effect of renewable energy on co2 emission in Sub Saharan Africa. Systemic analytics, 2(2), 304–314. https://doi.org/10.31181/sa22202431
- [5] Ayoub, M. F. M. (2020). Reliability assessment of wind turbines. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://B2n.ir/tm2441
- [6] Adeniran, A. A., Adeniran, A. O., Familusi, O. B., & Adedayo, O. (2024). The outlook of cyber security in african businesses: Issues and way-out. Management analytics and social insights, 1(2), 260–271. https://doi.org/10.22105/masi.v1i2.54
- [7] Dumitru, C. D., & Gligor, A. (2020). Optimal energy production planning in power systems with wind energy sources. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://B2n.ir/zt5494
- [8] Chehouri, A., Younes, R., Ilinca, A., & Perron, J. (2016). Wind turbine design: Multi‐objective optimization. InTech. http://dx.doi.org/10.5772/63481
- [9] Animasaun, A. B., Adeniran, A. O., & Udorah, F. N. (2025). Mechanical properties of concrete by substituting sawdust with ground glass. Mechanical technology and engineering insights, 2(1), 1–9. https://mtei.reapress.com/journal/article/view/31
- [10] Karthikeyan, N., Anand, R. B., Suthakar, T., & Barhate, S. (2019). Materials, innovations and future research opportunities on wind turbine blades—Insight review. Environmental progress & sustainable energy, 38(3), e13046. https://doi.org/10.1002/ep.13046
- [11] Tong, C. (2018). Advanced materials enable renewable wind energy capture and generation. In Introduction to materials for advanced energy systems (pp. 379–444). Springer. https://doi.org/10.1007/978-3-319-98002-7_6
- [12] Adeniran, A. O., Stephen, F. S., Babawole, F. O., & Victoria, M. O. (2024). Adoption of fourth industrial revolution technologies in the construction sector: Evidence from previous studies. International journal of innovation in engineering, 4(3), 1–18. https://doi.org/10.59615/ijie.4.3.1
- [13] West, J. R., & Lele, S. K. (2020). Wind turbine performance in very large wind farms: Betz analysis revisited. Energies, 13(5), 1–25. https://doi.org/10.3390/en13051078
- [14] Hansen, M. (2015). Aerodynamics of wind turbines. Routledge. https://B2n.ir/kj6152
- [15] Schaffarczyk, A. P. (2024). Introduction to wind turbine aerodynamics. Springer Nature. https://doi.org/10.1007/978-3-642-36409-9
- [16] Timmer, W. A., & Bak, C. (2023). Aerodynamic characteristics of wind turbine blade airfoils. In Advances in wind turbine blade design and materials (second edition) (pp. 129–167). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-103007-3.00011-2
- [17] Nijssen, R. P. L., & Brøndsted, P. (2023). Fatigue as a design driver for composite wind turbine blades. In Advances in wind turbine blade design and materials (second edition) (pp. 217–248). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-103007-3.00006-9
- [18] Reddy, S. S. P., Suresh, R., M.B., H., & Shivakumar, B. P. (2021). Use of composite materials and hybrid composites in wind turbine blades. Materials today: proceedings, 46, 2827–2830. https://doi.org/10.1016/j.matpr.2021.02.745
- [19] Andrew Ning, S., Damiani, R., & Moriarty, P. J. (2014). Objectives and constraints for wind turbine optimization. Journal of solar energy engineering, 136(4), 41010. https://doi.org/10.1115/1.4027693
- [20] Olajiga, O. K., Obiuto, N. C., Adebayo, R. A., & Festus-Ikhuoria, I. C. (2024). Advanced materials for wind energy: Reviewing innovations and challenges in the USA. International journal of advances in engineering and management, 6(3), 454–465. https://b2n.ir/tn6852
- [21] Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade- A review. Materials today: proceedings, 5(1-3), 2635–2640. https://doi.org/10.1016/j.matpr.2018.01.043
- [22] Mishnaevsky Jr, L., & Thomsen, K. (2020). Costs of repair of wind turbine blades: Influence of technology aspects. Wind energy, 23(12), 2247–2255. https://doi.org/10.1002/we.2552
- [23] Chehouri, A. (2014). Advances in composite wind turbine blades: A comparative study. Anchor Academic Publishing. https://B2n.ir/yf1380
- [24] Vassilopoulos, A. (2023). Fatigue behavior and life prediction of wind turbine blade composite materials. In Advances in wind turbine blade design and materials (pp. 287–340). Woodhead Publishing Series in Energy. https://doi.org/10.1016/B978-0-08-103007-3.00005-7
- [25] Kasem, M. A. M. (2020). Aerodynamic, structural and aeroelastic design of wind turbine blades. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/th6173
- [26] Ibrahim, H., Ghandour, M., Dimitrova, M., Ilinca, A., & Perron, J. (2011). Integration of wind energy into electricity systems: technical challenges and actual solutions. Energy procedia, 6, 815–824. https://doi.org/10.1016/j.egypro.2011.05.092
- [27] Ninduwezuor-Ehiobu, N., Tula, O. A., Daraojimba, C., Ofonagoro, K. A., Ogunjobi, O. A., Gidiagba, J. O., … & Banso, A. A. (2023). Exploring innovative material integration in modern manufacturing for advancing us competitiveness in sustainable global economy. Engineering science & technology journal, 4(3), 140–168. https://b2n.ir/wb6435
- [28] Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: recent trends and future opportunities–A critical review. Composites part c: open access, 7, 100220. https://doi.org/10.1016/j.jcomc.2021.100220
- [29] Pougnet, H., Lepp, E., Ead, A. S., & Carey, J. (2021). The application of bio-based composites in wind turbine blades. https://doi.org/10.7939/r3-hj6z-4q60
- [30] Megahed, M., Abo-bakr, R. M., & Mohamed, S. A. (2020). Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Composite structures, 239, 111984. https://doi.org/10.1016/j.compstruct.2020.111984
- [31] Kalkanis, K., Psomopoulos, C. S., Kaminaris, S., Ioannidis, G., & Pachos, P. (2019). Wind turbine blade composite materials-End of life treatment methods. Energy procedia, 157, 1136–1143. https://doi.org/10.1016/j.egypro.2018.11.281
- [32] Girard, H. (2022). Hybrid composites for very large lightweight wind turbine blades: Structural and materials aspects. Advanced composites in aerospace engineering applications (pp. 421–433). http://dx.doi.org/10.1007/978-3-030-88192-4_21
- [33] Omidvarnia, F., & Sarhadi, A. (2024). Nature-inspired designs in wind energy: A review. Biomimetics, 9(2), 1–37. https://doi.org/10.3390/biomimetics9020090
- [34] Shourangiz-Haghighi, A., Haghnegahdar, M. A., Wang, L., Mussetta, M., Kolios, A., & Lander, M. (2020). State of the art in the optimisation of wind turbine performance using CFD. Archives of computational methods in engineering, 27, 413–431. https://doi.org/10.1007/s11831-019-09316-0
- [35] Miller, A., Chang, B., Issa, R., & Chen, G. (2013). Review of computer-aided numerical simulation in wind energy. Renewable and sustainable energy reviews, 25, 122–134. https://doi.org/10.1016/j.rser.2013.03.059
- [36] Kim, Y., Bangga, G., & Delgado, A. (2020). Wind turbine airfoil boundary layer optimization using genetic algorithm with 3D rotational augmentation. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/kh4281
- [37] Higgins, S., & Stathopoulos, T. (2021). Application of artificial intelligence to urban wind energy. Building and environment, 197, 107848. https://doi.org/10.1016/j.buildenv.2021.107848
- [38] Noman, A. Al, Tasneem, Z., Sahed, M. F., Muyeen, S. M., Das, S. K., & Alam, F. (2022). Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework. Renewable and sustainable energy reviews, 168, 112531. https://doi.org/10.1016/j.rser.2022.112531
- [39] Hsu, J. Y., Wang, Y. F., Lin, K. C., Chen, M. Y., & Hsu, J. H. Y. (2020). Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE access, 8, 23427–23439. https://ieeexplore.ieee.org/abstract/document/8966331
- [40] Dilanika Kulatunga, S., Jayamani, E., Heng Soon, K., Hari Prashanth, P. V. S., Jeyanthi, S., & Ravi Sankar, R. (2022). Comparative study of static and fatigue performances of wind turbine blade materials. Materials today: Proceedings, 62, 6848–6853. https://doi.org/10.1016/j.matpr.2022.05.052
- [41] Liao, D., Zhu, S. P., Correia, J. A. F. O., De Jesus, A. M. P., Veljkovic, M., & Berto, F. (2022). Fatigue reliability of wind turbines: Historical perspectives, recent developments and future prospects. Renewable energy, 200, 724–742. https://doi.org/10.1016/j.renene.2022.09.093
- [42] Verma, A. S., Vedvik, N. P., Haselbach, P. U., Gao, Z., & Jiang, Z. (2019). Comparison of numerical modelling techniques for impact investigation on a wind turbine blade. Composite structures, 209, 856–878. https://doi.org/10.1016/j.compstruct.2018.11.001
- [43] Ashby, M. F., & Cebon, D. (1993). Materials selection in mechanical design. Le journal de physique IV, 3(7), 1–7. https://doi.org/10.1051/jp4:1993701
- [44] Melanson, M., Chang, M., & Baker II, W. (2010). Wind tunnel testing's future: a vision of the next generation of wind tunnel test requirements and facilities. 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 142). https://doi.org/10.2514/6.2010-142
- [45] Viba, J., Beresnevich, V., & Irbe, M. (2020). Synthesis and optimization of wind energy conversion devices. Design optimization of wind energy conversion systems with applications, karam maalawi, ed. london: intechopen, 125–141. https://b2n.ir/nq2057
- [46] Sanderse, B., Pijl, S. P., & Koren, B. (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind energy, 14, 799–819. http://dx.doi.org/10.1002/we.458
- [47] Wagh, R. (2024). Computational fluid dynamics in wind energy: Modeling and optimization for turbine design. Panamerican mathematical journal, 34, 153–170. http://dx.doi.org/10.52783/pmj.v34.i2.933
- [48] Pourrajabian, A., Mirzaei, M., Ebrahimi, R., & Wood, D. (2014). Effect of air density on the performance of a small wind turbine blade: A case study in Iran. Journal of wind engineering and industrial aerodynamics, 126, 1–10. https://doi.org/10.1016/j.jweia.2014.01.001
- [49] Maalawi, K. Y. (2020). Design optimization of wind energy conversion systems with applications. InTechOpen. https://library.oapen.org/handle/20.500.12657/43839
- [50] Sartori, L., Cacciola, S., Croce, A., & Riboldi, C. E. D. (2020). A research framework for the multidisciplinary design and optimization of wind turbines. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/zd7459
- [51] Jaber, A. A., & Shandookh, A. A. (2024). 3D Printing for wind turbine blade manufacturing: A review of materials, design optimization, and challenges. Engineering and technology journal, 42(7), 895-911. http://dx.doi.org/10.30684/etj.2024.144841.1646
- [52] Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and sustainable energy reviews, 97, 165–176. https://doi.org/10.1016/j.rser.2018.08.041
- [53] Bortolotti, P., Branlard, E., Gupta, A., Johnson, N., Jonkman, J., Moriarty, P., … & Veers, P. (2024). The wind turbine rotors of the future: A research agenda from the big adaptive rotor project. https://b2n.ir/gh9717
- [54] Joustra, J., Flipsen, B., & Balkenende, R. (2021). Structural reuse of high end composite products: A design case study on wind turbine blades. Resources, conservation and recycling, 167, 105393. https://doi.org/10.1016/j.resconrec.2020.105393
- [55] Chen, K. N., & Chen, P. Y. (2010). Structural optimization of 3 MW wind turbine blades using a two-step procedure. International journal for simulation and multidisciplinary design optimization, 4(3), 159. http://dx.doi.org/10.1051/ijsmdo/2010020
- [56] Fidan, I., Huseynov, O., Ali, M. A., Alkunte, S., Rajeshirke, M., Gupta, A., … & Yilmaz, O. (2023). Recent inventions in additive manufacturing: Holistic review. Inventions, 8(4), 1–45. https://doi.org/10.3390/inventions8040103
- [57] Raina, N., Sharma, P., Slathia, P. S., Bhagat, D., & Pathak, A. K. (2020). Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology. In Nanomaterials and environmental biotechnology (pp. 271–297). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-34544-0_15
- [58] Mokhena, T. C., Mtibe, A., Mokhothu, T. H., Mochane, M. J., & John, M. J. (2023). A review on bast-fibre-reinforced hybrid composites and their applications. Polymers, 15(16), 1–28. https://doi.org/10.3390/polym15163414
- [59] Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing Technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers, 13(21), 1-42. https://doi.org/10.3390/polym13213721
- [60] Singh, U., Lohumi, M., & Kumar, H. (2020). Additive manufacturing in wind energy systems: A review. In Proceedings of international conference in mechanical and energy technology (pp. 757–766). Smart Innovation. http://dx.doi.org/10.1007/978-981-15-2647-3_71
- [61] Ukoba, K., & Jen, T. C. (2023). Thin films, atomic layer deposition, and 3D Printing: Demystifying the concepts and their relevance in industry 4.0. CRC Press. https://doi.org/10.1201/9781003364481
- [62] Zhong, Z. W. (2021). Processes for environmentally friendly and/or cost-effective manufacturing. Materials and manufacturing processes, 36(9), 987–1009. https://doi.org/10.1080/10426914.2021.1885709
- [63] Bhattacharjee, J., & Roy, S. (2024). Smart materials for sustainable energy. Natural resources conservation and research, 7, 5536. http://dx.doi.org/10.24294/nrcr.v7i1.5536
- [64] Sharma, P. K., Kumar, D. A., William, P., Obulesu, D., Pandian, P. M., Khan, T. K. H., & Manikandan, G. (2023). Energy storage system based on hybrid wind and photovoltaic technologies. Measurement: sensors, 30, 100915. https://doi.org/10.1016/j.measen.2023.100915