Optimization of Wind Turbine Performance through Advanced Materials and Design

Authors

https://doi.org/10.22105/opt.v2i1.69

Abstract

Improving wind turbine blade design and overall performance is essential; as a result, this study offers a thorough analysis of recent developments in advanced materials and aerodynamic optimization techniques. The escalating global demand for sustainable power necessitates maximizing the efficiency and sustainability of wind energy. Despite progress, challenges remain in optimizing energy capture, ensuring the structural integrity of increasingly larger turbines, and addressing environmental concerns. This review critically examines the potential of high-performance composites (such as CFRPs and bio-based alternatives), smart materials (including SMAs and self-healing polymers), and nanomaterials (for surface coatings) to improve blade performance, durability, and sustainability. Furthermore, it analyses the impact of innovative aerodynamic profiles (including bio-inspired designs), variable pitch and twist technologies, and load reduction strategies on energy efficiency. The study identifies key challenges and research gaps in the integrated application of advanced materials and aerodynamic design for next-generation wind turbines, emphasizing the need for cost-effective and scalable solutions alongside comprehensive Life Cycle Assessments (LCAs). By synthesizing current knowledge, this review highlights promising future research directions to achieve more efficient, sustainable, and economically viable wind energy solutions through the synergistic advancement of materials and design.

Keywords:

Advanced materials, Aerodynamic optimisation, Wind turbine blades

References

  1. [1] Firoozi, A. A., Hejazi, F., & Firoozi, A. A. (2024). Advancing wind energy efficiency: A systematic review of aerodynamic optimization in wind turbine blade design. Energies, 17(12), 1–31. https://doi.org/10.3390/en17122919

  2. [2] Tolasa, D. G., & Furi, A. T. (2025). The role of advanced materials in the optimization of wind energy systems: A physics based approach. Acceleron aerospace journal, 4(1), 847–857. https://doi.org/10.61359/11.2106-2504

  3. [3] Udorah, F. N., & Adeniran, A. O. (2025). A meta-study on smart coatings with carbon nanoparticles. Journal of environmental engineering and energy, 2(1), 44–63. https://doi.org/10.22105/jeee.v2i1.43

  4. [4] Familusi, O. B., Omoyeni, O. D., Samchuks, O. M., & Adeniran, A. O. (2024). Effect of renewable energy on co2 emission in Sub Saharan Africa. Systemic analytics, 2(2), 304–314. https://doi.org/10.31181/sa22202431

  5. [5] Ayoub, M. F. M. (2020). Reliability assessment of wind turbines. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://B2n.ir/tm2441

  6. [6] Adeniran, A. A., Adeniran, A. O., Familusi, O. B., & Adedayo, O. (2024). The outlook of cyber security in african businesses: Issues and way-out. Management analytics and social insights, 1(2), 260–271. https://doi.org/10.22105/masi.v1i2.54

  7. [7] Dumitru, C. D., & Gligor, A. (2020). Optimal energy production planning in power systems with wind energy sources. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://B2n.ir/zt5494

  8. [8] Chehouri, A., Younes, R., Ilinca, A., & Perron, J. (2016). Wind turbine design: Multi‐objective optimization. InTech. http://dx.doi.org/10.5772/63481

  9. [9] Animasaun, A. B., Adeniran, A. O., & Udorah, F. N. (2025). Mechanical properties of concrete by substituting sawdust with ground glass. Mechanical technology and engineering insights, 2(1), 1–9. https://mtei.reapress.com/journal/article/view/31

  10. [10] Karthikeyan, N., Anand, R. B., Suthakar, T., & Barhate, S. (2019). Materials, innovations and future research opportunities on wind turbine blades—Insight review. Environmental progress & sustainable energy, 38(3), e13046. https://doi.org/10.1002/ep.13046

  11. [11] Tong, C. (2018). Advanced materials enable renewable wind energy capture and generation. In Introduction to materials for advanced energy systems (pp. 379–444). Springer. https://doi.org/10.1007/978-3-319-98002-7_6

  12. [12] Adeniran, A. O., Stephen, F. S., Babawole, F. O., & Victoria, M. O. (2024). Adoption of fourth industrial revolution technologies in the construction sector: Evidence from previous studies. International journal of innovation in engineering, 4(3), 1–18. https://doi.org/10.59615/ijie.4.3.1

  13. [13] West, J. R., & Lele, S. K. (2020). Wind turbine performance in very large wind farms: Betz analysis revisited. Energies, 13(5), 1–25. https://doi.org/10.3390/en13051078

  14. [14] Hansen, M. (2015). Aerodynamics of wind turbines. Routledge. https://B2n.ir/kj6152

  15. [15] Schaffarczyk, A. P. (2024). Introduction to wind turbine aerodynamics. Springer Nature. https://doi.org/10.1007/978-3-642-36409-9

  16. [16] Timmer, W. A., & Bak, C. (2023). Aerodynamic characteristics of wind turbine blade airfoils. In Advances in wind turbine blade design and materials (second edition) (pp. 129–167). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-103007-3.00011-2

  17. [17] Nijssen, R. P. L., & Brøndsted, P. (2023). Fatigue as a design driver for composite wind turbine blades. In Advances in wind turbine blade design and materials (second edition) (pp. 217–248). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-103007-3.00006-9

  18. [18] Reddy, S. S. P., Suresh, R., M.B., H., & Shivakumar, B. P. (2021). Use of composite materials and hybrid composites in wind turbine blades. Materials today: proceedings, 46, 2827–2830. https://doi.org/10.1016/j.matpr.2021.02.745

  19. [19] Andrew Ning, S., Damiani, R., & Moriarty, P. J. (2014). Objectives and constraints for wind turbine optimization. Journal of solar energy engineering, 136(4), 41010. https://doi.org/10.1115/1.4027693

  20. [20] Olajiga, O. K., Obiuto, N. C., Adebayo, R. A., & Festus-Ikhuoria, I. C. (2024). Advanced materials for wind energy: Reviewing innovations and challenges in the USA. International journal of advances in engineering and management, 6(3), 454–465. https://b2n.ir/tn6852

  21. [21] Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade- A review. Materials today: proceedings, 5(1-3), 2635–2640. https://doi.org/10.1016/j.matpr.2018.01.043

  22. [22] Mishnaevsky Jr, L., & Thomsen, K. (2020). Costs of repair of wind turbine blades: Influence of technology aspects. Wind energy, 23(12), 2247–2255. https://doi.org/10.1002/we.2552

  23. [23] Chehouri, A. (2014). Advances in composite wind turbine blades: A comparative study. Anchor Academic Publishing. https://B2n.ir/yf1380

  24. [24] Vassilopoulos, A. (2023). Fatigue behavior and life prediction of wind turbine blade composite materials. In Advances in wind turbine blade design and materials (pp. 287–340). Woodhead Publishing Series in Energy. https://doi.org/10.1016/B978-0-08-103007-3.00005-7

  25. [25] Kasem, M. A. M. (2020). Aerodynamic, structural and aeroelastic design of wind turbine blades. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/th6173

  26. [26] Ibrahim, H., Ghandour, M., Dimitrova, M., Ilinca, A., & Perron, J. (2011). Integration of wind energy into electricity systems: technical challenges and actual solutions. Energy procedia, 6, 815–824. https://doi.org/10.1016/j.egypro.2011.05.092

  27. [27] Ninduwezuor-Ehiobu, N., Tula, O. A., Daraojimba, C., Ofonagoro, K. A., Ogunjobi, O. A., Gidiagba, J. O., … & Banso, A. A. (2023). Exploring innovative material integration in modern manufacturing for advancing us competitiveness in sustainable global economy. Engineering science & technology journal, 4(3), 140–168. https://b2n.ir/wb6435

  28. [28] Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: recent trends and future opportunities–A critical review. Composites part c: open access, 7, 100220. https://doi.org/10.1016/j.jcomc.2021.100220

  29. [29] Pougnet, H., Lepp, E., Ead, A. S., & Carey, J. (2021). The application of bio-based composites in wind turbine blades. https://doi.org/10.7939/r3-hj6z-4q60

  30. [30] Megahed, M., Abo-bakr, R. M., & Mohamed, S. A. (2020). Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Composite structures, 239, 111984. https://doi.org/10.1016/j.compstruct.2020.111984

  31. [31] Kalkanis, K., Psomopoulos, C. S., Kaminaris, S., Ioannidis, G., & Pachos, P. (2019). Wind turbine blade composite materials-End of life treatment methods. Energy procedia, 157, 1136–1143. https://doi.org/10.1016/j.egypro.2018.11.281

  32. [32] Girard, H. (2022). Hybrid composites for very large lightweight wind turbine blades: Structural and materials aspects. Advanced composites in aerospace engineering applications (pp. 421–433). http://dx.doi.org/10.1007/978-3-030-88192-4_21

  33. [33] Omidvarnia, F., & Sarhadi, A. (2024). Nature-inspired designs in wind energy: A review. Biomimetics, 9(2), 1–37. https://doi.org/10.3390/biomimetics9020090

  34. [34] Shourangiz-Haghighi, A., Haghnegahdar, M. A., Wang, L., Mussetta, M., Kolios, A., & Lander, M. (2020). State of the art in the optimisation of wind turbine performance using CFD. Archives of computational methods in engineering, 27, 413–431. https://doi.org/10.1007/s11831-019-09316-0

  35. [35] Miller, A., Chang, B., Issa, R., & Chen, G. (2013). Review of computer-aided numerical simulation in wind energy. Renewable and sustainable energy reviews, 25, 122–134. https://doi.org/10.1016/j.rser.2013.03.059

  36. [36] Kim, Y., Bangga, G., & Delgado, A. (2020). Wind turbine airfoil boundary layer optimization using genetic algorithm with 3D rotational augmentation. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/kh4281

  37. [37] Higgins, S., & Stathopoulos, T. (2021). Application of artificial intelligence to urban wind energy. Building and environment, 197, 107848. https://doi.org/10.1016/j.buildenv.2021.107848

  38. [38] Noman, A. Al, Tasneem, Z., Sahed, M. F., Muyeen, S. M., Das, S. K., & Alam, F. (2022). Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework. Renewable and sustainable energy reviews, 168, 112531. https://doi.org/10.1016/j.rser.2022.112531

  39. [39] Hsu, J. Y., Wang, Y. F., Lin, K. C., Chen, M. Y., & Hsu, J. H. Y. (2020). Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE access, 8, 23427–23439. https://ieeexplore.ieee.org/abstract/document/8966331

  40. [40] Dilanika Kulatunga, S., Jayamani, E., Heng Soon, K., Hari Prashanth, P. V. S., Jeyanthi, S., & Ravi Sankar, R. (2022). Comparative study of static and fatigue performances of wind turbine blade materials. Materials today: Proceedings, 62, 6848–6853. https://doi.org/10.1016/j.matpr.2022.05.052

  41. [41] Liao, D., Zhu, S. P., Correia, J. A. F. O., De Jesus, A. M. P., Veljkovic, M., & Berto, F. (2022). Fatigue reliability of wind turbines: Historical perspectives, recent developments and future prospects. Renewable energy, 200, 724–742. https://doi.org/10.1016/j.renene.2022.09.093

  42. [42] Verma, A. S., Vedvik, N. P., Haselbach, P. U., Gao, Z., & Jiang, Z. (2019). Comparison of numerical modelling techniques for impact investigation on a wind turbine blade. Composite structures, 209, 856–878. https://doi.org/10.1016/j.compstruct.2018.11.001

  43. [43] Ashby, M. F., & Cebon, D. (1993). Materials selection in mechanical design. Le journal de physique IV, 3(7), 1–7. https://doi.org/10.1051/jp4:1993701

  44. [44] Melanson, M., Chang, M., & Baker II, W. (2010). Wind tunnel testing's future: a vision of the next generation of wind tunnel test requirements and facilities. 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 142). https://doi.org/10.2514/6.2010-142

  45. [45] Viba, J., Beresnevich, V., & Irbe, M. (2020). Synthesis and optimization of wind energy conversion devices. Design optimization of wind energy conversion systems with applications, karam maalawi, ed. london: intechopen, 125–141. https://b2n.ir/nq2057

  46. [46] Sanderse, B., Pijl, S. P., & Koren, B. (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind energy, 14, 799–819. http://dx.doi.org/10.1002/we.458

  47. [47] Wagh, R. (2024). Computational fluid dynamics in wind energy: Modeling and optimization for turbine design. Panamerican mathematical journal, 34, 153–170. http://dx.doi.org/10.52783/pmj.v34.i2.933

  48. [48] Pourrajabian, A., Mirzaei, M., Ebrahimi, R., & Wood, D. (2014). Effect of air density on the performance of a small wind turbine blade: A case study in Iran. Journal of wind engineering and industrial aerodynamics, 126, 1–10. https://doi.org/10.1016/j.jweia.2014.01.001

  49. [49] Maalawi, K. Y. (2020). Design optimization of wind energy conversion systems with applications. InTechOpen. https://library.oapen.org/handle/20.500.12657/43839

  50. [50] Sartori, L., Cacciola, S., Croce, A., & Riboldi, C. E. D. (2020). A research framework for the multidisciplinary design and optimization of wind turbines. In Design optimization of wind energy conversion systems with applications. IntechOpen. https://b2n.ir/zd7459

  51. [51] Jaber, A. A., & Shandookh, A. A. (2024). 3D Printing for wind turbine blade manufacturing: A review of materials, design optimization, and challenges. Engineering and technology journal, 42(7), 895-911. http://dx.doi.org/10.30684/etj.2024.144841.1646

  52. [52] Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and sustainable energy reviews, 97, 165–176. https://doi.org/10.1016/j.rser.2018.08.041

  53. [53] Bortolotti, P., Branlard, E., Gupta, A., Johnson, N., Jonkman, J., Moriarty, P., … & Veers, P. (2024). The wind turbine rotors of the future: A research agenda from the big adaptive rotor project. https://b2n.ir/gh9717

  54. [54] Joustra, J., Flipsen, B., & Balkenende, R. (2021). Structural reuse of high end composite products: A design case study on wind turbine blades. Resources, conservation and recycling, 167, 105393. https://doi.org/10.1016/j.resconrec.2020.105393

  55. [55] Chen, K. N., & Chen, P. Y. (2010). Structural optimization of 3 MW wind turbine blades using a two-step procedure. International journal for simulation and multidisciplinary design optimization, 4(3), 159. http://dx.doi.org/10.1051/ijsmdo/2010020

  56. [56] Fidan, I., Huseynov, O., Ali, M. A., Alkunte, S., Rajeshirke, M., Gupta, A., … & Yilmaz, O. (2023). Recent inventions in additive manufacturing: Holistic review. Inventions, 8(4), 1–45. https://doi.org/10.3390/inventions8040103

  57. [57] Raina, N., Sharma, P., Slathia, P. S., Bhagat, D., & Pathak, A. K. (2020). Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology. In Nanomaterials and environmental biotechnology (pp. 271–297). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-34544-0_15

  58. [58] Mokhena, T. C., Mtibe, A., Mokhothu, T. H., Mochane, M. J., & John, M. J. (2023). A review on bast-fibre-reinforced hybrid composites and their applications. Polymers, 15(16), 1–28. https://doi.org/10.3390/polym15163414

  59. [59] Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing Technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers, 13(21), 1-42. https://doi.org/10.3390/polym13213721

  60. [60] Singh, U., Lohumi, M., & Kumar, H. (2020). Additive manufacturing in wind energy systems: A review. In Proceedings of international conference in mechanical and energy technology (pp. 757–766). Smart Innovation. http://dx.doi.org/10.1007/978-981-15-2647-3_71

  61. [61] Ukoba, K., & Jen, T. C. (2023). Thin films, atomic layer deposition, and 3D Printing: Demystifying the concepts and their relevance in industry 4.0. CRC Press. https://doi.org/10.1201/9781003364481

  62. [62] Zhong, Z. W. (2021). Processes for environmentally friendly and/or cost-effective manufacturing. Materials and manufacturing processes, 36(9), 987–1009. https://doi.org/10.1080/10426914.2021.1885709

  63. [63] Bhattacharjee, J., & Roy, S. (2024). Smart materials for sustainable energy. Natural resources conservation and research, 7, 5536. http://dx.doi.org/10.24294/nrcr.v7i1.5536

  64. [64] Sharma, P. K., Kumar, D. A., William, P., Obulesu, D., Pandian, P. M., Khan, T. K. H., & Manikandan, G. (2023). Energy storage system based on hybrid wind and photovoltaic technologies. Measurement: sensors, 30, 100915. https://doi.org/10.1016/j.measen.2023.100915

Published

2025-03-08

Issue

Section

Articles

How to Cite

Animasaun, A. B. ., Adeniran, A. O. ., Udorah, F. N., & Oluyemi, I. A. . (2025). Optimization of Wind Turbine Performance through Advanced Materials and Design. Optimality, 2(1), 1-15. https://doi.org/10.22105/opt.v2i1.69