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1|Introduction  

In the literature, Vendor Selection Problem (VSP) was studied by Dickson [1]. First, Zadeh [2] proposed the 

philosophy of fuzzy sets. Fuzzy decision-making was developed by Zimmermann [3], where they introduced 

fuzzy programming and LPP with multiple objective functions. Later, several researchers worked on various 
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applications based on fuzzy uncertainty. Dubois and Prade [4] investigated the theory and applications of 

fuzzy uncertainty. Kaufmann and Gupta [5] studied several fuzzy mathematical models with their applications 

to engineering and management sciences. Maleki et al. [6] proposed a very effective method to solve a LPP 

including the fuzzy variables and the comparison of fuzzy numbers.  

Many authors [7]–[9], studied the problems where all the parameters are uncertain. Lai and Hwang [10] 

assumed that the parameters might be characterized by triangular possibility distribution; then, they proposed 

an auxiliary model, which was solved by applying the multi-objective LPP.   

Weber and Current [11] studied the multiple objective methods for solving the VSP. Several authors used 

fuzzy multi-objective approaches to VSP, like [12]–[15], studied the manufacturing delivery performance 

problem with an application to supply chain management, further investigated by Carvalho and Costa [16]. 

Several researchers studied the modified S-curve membership function in VSP, for example, Vasant, M. [17], 

Madroñero [18], Torabi and Hassini [19] presented a novel method based on possibilistic programming to 

solve a multi-objective supply chain model. Selim and Ozkarahan [20] addressed a supply chain model 

integrated with network design, which an interactive fuzzy goal programming method solved. Many papers 

integrated fuzzy and stochastic uncertainty with VSP to determine the performance of suppliers and choose 

the suitable supplier are those of [21]–[24], and many more. Several papers have been published in green 

supplier selection in the last few decades. For instance, Jain et al. [25] studied a buyer-initiated decision-making 

process with the inclusion of the green supplier selection concept.  

Luthra et al. [22] investigated a method to solve the sustainable VSP further extended by Chen and Zou [26]. 

Ehsan et al. [10] studied the green VSP using a MODM algorithm. Ghaniabadi and Mazinani [27] presented 

a dynamic lot size model for multiple suppliers. Turk et al. [28] studied the multi-objective model in inventory 

management with supplier selection. Aouadni et al. [29] presented a detailed survey on VSP as well as order 

allocation problems. This study investigates the approximation of close interval for piecewise quadratic fuzzy 

to solve the VSP. The remaining portion of the work is arranged as follows. Section 2 recalls some basic 

concepts needed. Section 3 introduces VSP as an LPP. Section 4 formulates the piecewise quadratic fuzzy 

VSP. Section 5 provides a numerical example to support and validate the proposed methodology. In the end, 

a few concluding remarks are reported in Section 6. 

2 | Basic Concepts 

In this section, some basic terms and results are recalled. 

Definition 1 ([30]). A piecewise quadratic fuzzy number (PQFN) is denoted by ãPQ = (a1, a2, a3, a4, a5), 

where a1 ≤ a2 ≤ a3 ≤  a4 ≤ a5 are reals, is defined by its membership function 𝜇ãPQ as follows (Fig. 1). 
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Fig. 1. Graph of a PQFN. 

The interval of confidence at level α for the PQFN is defined as 

Definition 2 ([30]). An interval approximation [A] = [aα
L , aα

U] of a PQFN Ã is referred to as a closed interval 

approximation if 

Definition 3 ([30]). The associated ordinary numbers of PQFN corresponding to [A] = [aα
L , aα

U] is [A] =

[aα
L , aα

U] is equal to Â =
aα
L+aα

U

2
. 

Definition 4 ([30]). Suppose that ãPQ = (a1, a2, a3, a4, a5) and b̃PQ = (b1, b2, b3, b4, b5) be two  PQFNs. Then 

I. Addition: ãPQ⊕ b̃PQ = (a1 + b1, a2 + a2, a3 + b3, a4 + b4, a5 + b5). 

II. Scalar multiplication: α. ãPQ = (α a1, α  a2, α a3, α a4, α αa5), α > 0. 

Definition 5 ([30]). Let [A] = [(aα)
L, (aα)

U], and [B] = [(bα)
L, (bα)

U] be two interval approximations of 

PQFN. Then, two define the arithmetic operations as follows: 

I. Addition: [A] ⊕ [B] = [A] ⊕ [B] = [aα
L + bα

L , aα
U + bα

U]. 

II. Subtraction: [A] ⊖ [B] = [aα
L − bα

U, aα
U − bα

L]. 

III. Scalar multiplication: α [A] = {
  [α aα

L , α aα
U], α > 0,

[α aα
U, α aα

L], α < 0.
 

IV. Multiplication: [A] ⊙ [B] = [
aα
Ubα

L+aα
Lbα

U

2
,
aα
Lbα

L+aα
Ubα

U

2
]. 

V. Division: 
[A]

[B]
= {

  [
2aα
L

bα
L+ bα

U ,
2aα
U

bα
L+ bα

U   ] , [B] > 0 and bα
L + bα

U ≠ 0,

[
2aα
U

bα
L+ bα

U ,
2aα
L

bα
L+ bα

U] , [B] < 0 and bα
L + bα

U ≠ 0.
 

VI. The order relations (≈,≅,≲,≳) are defined as 

I. Fuzzy equal: [A] ≈  [B] if aα
L = bα

L  and aα
U = bα

U.  

II. Fuzzy equivalent: [A] ≅  [B] if aα
L + aα

U = bα
L + bα

U.  

III. [A] ≲  [B] if aα
L ≤ bα

L  and aα
U ≤ bα

U, or aα
L + aα

U ≤ bα
L + bα

U. 

IV. [A] ≳  [B] if aα
L ≥ bα

U and aα
U ≥ bα

L . 

(ãPQ)α = Lα(ãPQ) =   
[a1 + 2(a2 − a1)α, a5 − 2(a5 − a4)α] for all  α ∈ [0,1].  

aα
L = inf{x ∈ ℜ: μÃ ≥ 0.5},  and aα

U = sup{x ∈ ℜ: μÃ ≥ 0.5}.  
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3 | Vendor Selection Problem      

A VSP is defined as a LPP for minimizing price under the restriction of quality performance measures, 

services, and lead time is provided as [21] 

Where        

xi: fraction of demand allocated to vendor i. 

pi: price of item i. 

qi: quality level of item i. 

li: lead time of item i. 

si: level of service of item i. 

Q: required overall quality level. 

L: lead time level.  

S: service level. 

 4 | Piecewise Quadratic Fuzzy VSP  
Consider the following PQFVS using the close interval approximation as 

Where 

min𝑍(𝑥) =∑ pixi
n

i=1
.  

Subject to (1) 

∑ qixi ≥ Q,
n

i=1
  

∑ sixi ≥ S,
n

i=1
  

∑ lixi ≤ L,
n

i=1
  

∑ xi
n

i=1
= 1,  

xi ≥ 0 for all 𝑖.  

min𝑍(𝑥) =∑ [pi]xi
m

i=1
.  

Subject to (2) 

∑ [qi]xi
m

i=1
≥ [Q],  

∑ [si]xi ≥ [S]
m

i=1
,  

∑ [li]xi ≤ [L]
m

i=1
,  

∑ xi
m

i=1
= 1,  

xi ≥ 0 for all 𝑖.  
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P(ℜ ) = set of all close interval approximations on ℜ. 

Definition 6. Any  xj which satisfies the constraints in Problem (2) is referred to as a feasible solution. Let G 

be the set of all feasible solutions of Problem (1). We claim that x∗ ∈ G is said to be  an optimal solution only 

when [p]x∗ ≤ [p]x for all x ∈ G.  

Lemma 1. Problems (1) and (2) are equivalent. 

Proof: let G1 and G2 denote the respective two feasible solution sets of Problems (1) and (2). Then, an element 

x ∈ G1 if and only if  

If and only if 

If and only if 

If and only if 

[li] = [(li)α
L , (li)α

U ],  

[pi] = [(pi)α
L , (pi)α

U],  

[qi] = [(qi)α
L , (qi)α

U],  

[si] = [(si)α
L , (si)α

U ],  

[L] = [Lα
L , Lα

U],   

[Q] = [Qα
L , Qα

U],   

[S] = [Sα
L, Sα

U] ∈ P(ℜ).  

∑ [qi]xi
n

I=1
≥ [Q],  

∑ [si]xi ≥ [S]
n

i=1
,  

∑ [li]xi ≤ [L]
n

i=1
,  

 ∑xi

m

i=1

= 1.  

∑ [(qi)α
L , (qi)α

U]xi
m

I=1
≥ [Qα

L , Qα
U],  

∑ [(si)α
L , (si)α

U]xi ≥ [Sα
L, Sα

U]
m

i=1
,  

∑ [(li)α
L , (li)α

U]xi ≤ [Lα
L , Lα

U]
m

i=1
,  

∑ xi
m

i=1
= 1.  

∑ [(qi)α
LxI, (qi)α

Uxi]
m

I=1
≥ [Qα

L , Qα
U],  

∑ [(si)α
Lxi, (si)α

Uxi] ≥ [Sα
L, Sα

U]
m

i=1
,  

∑ [(li)α
LxI, (li)α

Uxi] ≤ [Lα
L , Lα

U]
m

I=1
,  

∑ xi
m

i=1
= 1.  
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If and only if 

If and only if 

Hence 

Let X∗ be the optimal feasible solution of Problem (2), then we obtain. 

If and only if 

If and only if 

If and only if 

Thus, we have X∗ is an optimal feasible solution of the crisp VSP as given by (1). 

Referring to the interval arithmetic operations [31] Problem (2) is converted into 2m+1 inequalities as follows: 

Let  Gi be a set of solutions to the i inequality and define. 

∑ (
(qi)α

L + (qi)α
U

2
)xi

m

I=1
≥ (

Qα
L + Qα

U

2
),  

∑ (
(si)α

L + (si)α
U

2
)xi ≥ (

Sα
L + Sα

U

2
)

m

i=1
,  

∑ (
(li)α

L + (li)α
U

2
)xi ≤ (

Lα
L + Lα

U

2
)

m

I=1
,  

∑ xi
m

i=1
= 1.  

∑ qixi ≥ Q ,
m

i=1
  

∑ sixi ≥ S,
m

i=1
  

∑ lixi ≤ L,
m

i=1
  

∑ xi
m

i=1
= 1.  

x ∈ G2.  

G1 ≅ G2.  

[P]X∗ ≤ [P]X for all X ∈ G1.  

∑ [pi]xi
∗

m

i=1
≤∑ [pi]xi for all xj ∈ G1,

m

i=1
  

∑ (
(pi)α

L + (pi)α
U

2
)xi

∗
m

i=1
≤∑ (

(pi)α
L + (pi)α

U

2
)xi

m

i=1
,  

∑ pixi
∗ ≤∑ pixi

n

i=1
.

m

i=1
  

∑ (qi)α
Lxi

m

i=1
≥ Qα

U ,   ∑ (qi)α
Uxi

m

i=1
≥ Qα

L  ,  

∑ (si)α
Lxi ≥

m

i=1
Sα
U ,    ∑ (si)α

Uxi ≥
m

i=1
Sα
L,  

∑ (li)α
Lxi ≤ Lα

L
m

i=1
,     ∑ (li)α

Uxi ≤ Lα
U

m

i=1
,  

∑ xi
m

i=1
= 1,  

xi ≥ 0 for all 𝑖.  

G = ⋃ Gi
2m+1
i=1 and G = ⋂ Gi

2m+1
i=1 .  
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Definition 7. Suppose that:  ∑ [q1
(i)
, q2
(i)
]xi

m
i=1 ≥ [Q1, Q2] ,   ∑ [s1

(i)
, s2
(i)
]xi

m
i=1 ≥ [S1, S2] and ∑ [l1

(i)
, l2
(i)
]xi

m
i=1 ≥

[L1, L2]. Then inequalities ∑ q(i)xi
m
i=1 ≥ Q,  ∑ s(i)xi

m
i=1 ≥ S and  ∑ l(i)xi

m
i=1 ≥ L are called the characteristic 

formulas of ∑ [q1
(i)
, q2
(i)
]xi

m
i=1 ≥ [Q1, Q2], ∑ [s1

(i)
, s2
(i)
]xi

m
i=1 ≥ [S1, S2] and ∑ [l1

(i)
, l2
(i)
]m

i=1 ≥ [L1, L2]; respectively. 

Here, q(i) ∈ [q1
(i)
, q2
(i)
], s(i) ∈  [s1

(i)
, s2
(i)
], and l(i) ∈ [l1

(i)
, l2
(i)
].  

Definition 8. For each inequality ∑ [q1
(i)
, q2
(i)
]xi

m
i=1 ≥ [Q1, Q2] ,   ∑ [s1

(i)
, s2
(i)
]xi

m
i=1 ≥

[S1, S2] and ∑ [l1
(i)
, l2
(i)
]xi

m
i=1 ≥ [L1, L2] if there is one characteristic formula such that its solution set is similar 

to G or G, in this case, we say that the characteristic formulas as maximum and minimum values range 

inequalities. 

Proposition 1. Let the following inequalities ∑ [q1
(i)
, q2
(i)
]xi

m
i=1 ≥ [Q1, Q2], ∑ [s1

(i), s2
(i)]xi

m
i=1 ≥

[S1, S2] and ∑ [l1
(i), l2

(i)]xi
m
i=1 ≥ [L1, L2]. Then, we have  ∑ (qi)α

Lxi
m
i=1 ≥ Qα

U, ∑ (qi)α
Uxi

m
i=1 ≥

Qα
L  , ∑ (si)α

Lxi ≥
m
i=1 Sα

U, ∑ (si)α
Uxi ≥

m
i=1 Sα

L, ∑ (li)α
Lxi ≤ Lα

Lm
i=1 , ∑ (li)α

Uxi ≤ Lα
Um

i=1  are maximum and minimum values 

range inequalities for these constraint conditions, respectively. 

By the arithmetic operations of intervals, Problem (2) is reduced into the following problems as 

Now, we obtain the following optimization problem: 

Suppose that the optimal solutions to Problems (3) and (4) are 

Thus, the optimal solution to the close interval approximation Problem (2) is 

min𝑍(𝑥) =∑ (pi)α
L  xi

m

i=1
.  

Subject to (3) 

∑ (qi)α
Uxi

m

i=1
≥ Qα

L ,  

∑ (qi)α
Uxi ≥ Sα

L
m

i=1
,  

∑ (li)α
Uxi ≤ Lα

U
m

i=1
,  

∑ xi
m

i=1
= 1,  

xi ≥ 0 for all i.  

min𝑍(𝑥) =∑ (pi)α
U xi.

m

i=1
  

Subject to (4) 

∑ (qi)α
Lxi

m

i=1
≥ Qα

U,   

∑ (qi)α
Uxi ≥ Sα

L
m

i=1
,  

∑ (qi)α
Lxi ≥ Sα

U
m

i=1
,  

∑ (li)α
Lxi ≤ Lα

L
m

i=1
,  

∑ xi
m

i=1
= 1,  

xi ≥ 0 for all i.  

x1
∗ , x2

∗ , … , xm
∗ ; Z1

∗, x1
∗∗, x2

∗∗, … , xm
∗∗; Z2

∗∗.  
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5 | Numerical Example 

Consider the following piecewise quadratic fuzzy VSP as in Table 1.  

Table 1. Vendor's source piecewise quadratic fuzzy data. 

 

The close interval approximations for the problem are presented in Table 2. 

Table 2. Vendor's source close interval approximation data. 

 

 

  

  

  

 

Applying Problem (2) to these data 

The interval Problem (6) is reduced to the following two LPPs as follows: 

Equivalently, we have the following problem. 

minZ(x) = [Z1
∗, Z2

∗∗ ].  

[
 
 
 
 
 
x1
x2
.
.
.
xm]
 
 
 
 
 

=

[
 
 
 
 
 
[x1
∗ , x1

∗∗ ]

[x2
∗ , x1

∗∗ ]
.
.
.

[xm
∗ , xm

∗∗ ]]
 
 
 
 
 

. (5) 

Factor Supplier 
   
              𝐀                                                    𝐁                                                   𝐂 

  Required Level   

Quantity 0 to 1 0 to 1 0 to 1  1 

Price ($/unit) (8, 9, 10.5, 11, 12) (8.5, 10, 10.5, 11.5, 12) (9, 10.5, 11, 12, 13) ----- 

Quality (%) (75, 80, 90, 95, 105) (83, 87,94, 97, 100) (84, 92, 98, 102, 105) (75, 80, 83, 85, 90) 

Lead time (days) (18, 20, 30, 35, 40) (15, 20, 25, 30, 35) (24, 25, 26, 27, 28) (15, 20, 25, 30, 35) 

Service (%) (75, 80, 90, 95, 100) (75, 92, 95, 100, 110) (85, 90, 95, 100, 105) (70, 75, 78, 80, 100) 

Factor Supplier 
 
   𝐀                    𝐁                       𝐂   

Required Level   

Quantity 0 to 1 0 to 1 0 to 1 1 

Price ($/unit) [9, 11] [10, 11.5] [10.5, 12] ----- 

Quality (%) [80, 95] [87, 97] [92, 102] [80, 85] 

Lead time (days) [20, 35] [20, 30] [25, 27] [20, 30] 

Service (%) [80, 95] [92, 100] [90, 100] [75, 80] 

minZ(x) = [9, 11]x1⊕ [10, 11.5]x2⊕ [10.5, 12]x3.  

Subject to (6) 

[0.80, 0.95]x1⊕ [0.87, 0.97]x2⊕ [0.92, 1.02]x3 ≥ [0.80, 0.85],  

[0.80, 0.95]x1⊕ [0.92, 1.00]x2⊕ [0.90, 1.00]x3 ≥ [0.75, 0.80],  

[20, 35]x1⊕ [20, 30]x2⊕ [25, 27]𝑥3 ≤ [20, 30],  

x1 + x2 + x3 = 1.0,  

x1, x2, x3 ≥ 0.  

minZ1(x) = 9x1 + 10x2 + 10.5x3.  

Subject to (7) 

0.95x1 + 0.97x2 + 1.02x3 ≥ 0.80,  

0.95x1 + 1.00x2 + 1.00x3 ≥ 0.75,  

35x1 + 30x2 + 27𝑥3 ≤ 30,  

x1 + x2 + x3 = 1.0,   

x1, x2, x3 ≥ 0.  
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The solutions to the two Problems (7) and (8) are given below:  

 

 

6 | Conclusions 

The VSP as an application of fully fuzzy LPP has been studied. The VSP with close interval approximation 

has been approached by taking the minimum and maximum value inequalities with the constraints reduced 

into two classical LPPs. The presented model possesses great future scope for development. One may 

consider the time value coefficients for more realistic objective function calculations. In addition, the model 

can be extended in the form of a multi-stage stochastic programming approach. As another future research 

direction, one may consider some more efficient algorithms to demonstrate the suggested model.  
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